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Shock-wave structure for some nonanalytical in-velocity closures
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The bimodal approach to the problem of shock structure is further investigated. The closing moments which
are nonanalytical in molecular velocity, namely, 1/v, and vi/ v, , are used. For rigid spheres, only the asymp-
totic (M — ) values of the shock thickness were found. For pseudo-Maxwellian molecules, using Bobylev’s
method [A. V. Bobylev, Theor. Math. Phys. 60, 820 (1984)] of the Fourier transformation of the Boltzmann
equation, it was possible to reduce the problem to a one-dimensional integral and to obtain the full dependence

of the thickness on the Mach number.

PACS number(s): 05.20.Dd, 05.60.+w, 47.45.—n, 51.10.+y

I. INTRODUCTION

A lot of investigations have been dedicated during the last
four decades or so to the problem of shock-wave structure on
the basis of the Boltzmann equation. Mostly this research
used the Mott-Smith bimodal ansatz [1] (see also the refer-
ences in [2]). But the closing moments for the determination
of the density profile in the shock wave were always analyti-
cal functions of the molecular velocity, usually power func-
tions of its components.

In [2] we proposed using nonanalytical functions of ve-
locity, namely 1/v,, which gives the equation for the density
profile, and v2/v,, which gives the equation for the profile
of the transverse temperature. The aim in [2] was to obtain
effective values of viscosity and thermal conductivity in the
limit M —1 and compare them with the classical Chapman-
Enskog values. The agreement turned out to be good for both
the viscosity and thermal conductivity. The analysis in [2]
was made for arbitrary inverse-power intermolecular poten-
tials (including rigid spheres) but only for M — 1. The results
were in the form of one-dimensional integrals which were
calculated numerically. Earlier, Yen and Ng [3] used the
same moments in their Monte Carlo simulation. In [4] the
transport coefficients were derived without any closure on
the basis of the first correction to the bimodal distribution
function for weak shock waves.

We would like to mention that recently a lot of important
results, but pertaining mostly to the existence of longitudinal
and transverse temperatures in weak and strong shock waves,
have appeared in [5—8]. In the present paper we use the
above closures to obtain the dependence of the shock wave
thickness for arbitrary Mach numbers. However, for rigid
spheres all we could do was to get the asymptotic values of
the corresponding thicknesses for the infinite Mach number.
But we were able to reduce_the problem to one-dimensional
integrals for the case of pseudo-Maxwellian molecules and
calculate the thicknesses for any Mach number.

*Address for correspondence: Tashkentskaya Street 10-2-39,
Moscow 109444, Russia. Fax: (7-095) 292-6511 AVORL 8494.
Electronic address: orlov@avorl.msk.ru.

1063-651X/96/53(1)/17(4)/$06.00 53

II. ANALYSIS

Consider the one-dimensional stationary Boltzmann equa-
tion in the usual notation [9]:

v,0f/9z=J(f,f)
=f LF(V)F(v)—F(v)f(vy)]gh db de d’v,.

For the distribution function f we will use below the Mott-
Smith bimodal ansatz [1]:

f=v(2)fo(v)+[1-v(2)]f1(v), (1)
where
fi=n;(27kT;/m)~¥?exp[ —m(v—u,;)?/2kT;]

are the upstream (i=0) and downstream (i=1) Max-
wellians. Though it is true that nowadays the Mott-Smith
ansatz is not considered to be a good approximation for the
distribution function, a judicious use of it can lead to good
approximations to the shock thickness.

For the weighted density v(z) we have v(—x)=1,
v(+)=0. Densities, velocities, and temperatures upstream
and downstream are connected via the Rankine-Hugoniot re-
lations which are obtained with the use of multiplication of
the Boltzmann equation by collisional invariants when the
moment of the collision integral is zero. The result is

uy lug=ng/n,=(M?*+3)/4M?,
T,/To=(M?*+3)(5M*>—1)/16M?,
where
M=uy/(5RT,/3)"?

is the upstream Mach number.

First we tried to apply the new closures 1/v, and viv,
for a gas of rigid spheres. Deshpande and Narasimha [10]
already calculated the collision integral for a combination of
Maxwellians. Their result is in the form of a two-
dimensional quadrature including confluent hypergeometric
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functions of a nonanalytical function of molecular velocity,
[i(co+cD?—(co-€)?]"%, where ¢;=(2RT) "A(v—u,).
Their expression turned out to be rather awkward and we
found it impossible either to calculate analytically
[Jdv, dv, J for arbitrary M or to reduce it to a one-
dimensional quadrature. Hence all we could try to do was to
treat their results for M —o. They gave separate formulas
for the region near the supersonic peak and for the rest of the
velocity space. Combining these formulas, we obtained the
following expression for the collision integral in the case of
the bimodal distribution function (1):

J=8v(1—v)nja*/(2RT,)
X[~ (|e;—eqol 7' = 3ler—ero)exp(—c})
—728( ¢~ ero)exp(—c10)1F1(2,3,¢30)],
where (F1(2,3,x)= 3+ 3m(x "1+ 2x)exp(x?)erfx. Here

¢y is directed along the z axis, c;0=+V3/2, and o is the
diameter of a rigid sphere. After some algebra, we obtain

j d?v Jjv,=Jmv(1—v)nio?
x[4exp(—%)f_+:dz exp(— V6z)
X[3V erfelz|—|z|exp(—2z%)]/(z+4/6)
— Vo[ exp(—3)+2+2/37 erfy/3/2] }.

The integral was taken numerically and the result turned out
to be

f d?v J/v,=—0.7354mv(1— v)nio>.

But [d’v J/v,=(ny—n,)dv/dz=—3nydv/dz>0, so, un-
fortunately, this 1/v, closure appears to describe the shock
wave of infinite strength inadequately.

Hence we tried v2/ vz=(v§+u§)/ v, closure correspond-
ing to the transport of transverse temperature in the shock
wave. Similar calculations show that

j d3v Jvz/vz=2\/; exp —%)v(l—v)n(z)azRTlB,

where

B= J+mdz exp(—\62)[2|z]|(1—-22)

—o

+ (1 —62%)erfc|z|1/(z+4//6)=0.021.

As  (d/dz)fd’v vif=2R(noTo—n.T,)dv/dz  and
dv/dz=—(4/8)v(1—v), where §=(n;—ng)/|dn/dz| . is
the shock thickness, and introducing upstream mean free
path A=(\2mnoo?)~!, we see that in this case \/&
=exp(— 2)V2/7B/32=0.3553.

In order to get, however, the full dependence of the shock
thickness on the Mach number, we were forced to treat a
model more artificial than the model of rigid spheres—
pseudo-Maxwellian molecules. Segal and Ferziger [11] write
about ‘““quasi-Maxwell” molecules which scatter isotropi-
cally (like hard spheres) but with their diameters
inversely proportional to the relative velocity. Kogan [12]
says that if for Maxwellian molecules the Boltzmann equa-
tion is df/dit=(16K/m)"[(f'fi—ff1)p dp de d*&,,
where p=b(mg?/16K)"*, then pseudo-Maxwellian mol-
ecules are such for which the Boltzmann equation can be
written in the form

df/dt=(16K/m)1/zf f'fip dp de d3§1—Aff f1d&;.

For Maxwellian molecules A =,

Segal [13] found a closed-form expression for J, and this
result without derivation was cited in [11]. But there seem to
be some errata in [11], because even the dimensionalities in
the left- and right-hand sides of formula (29) of [11] are
different. So we chose not to use this result, but to use in-
stead the approach by Bobylev [14] of Fourier-transforming
the Boltzmann equation. If

‘P(k):f d’v f(v)exp(—ik-v),

‘If(k)=f dv J(v)exp(—ik-v),

then, as Bobylev showed,

qr:J d*n g(k-n/k)[ @(k/2+kn/2) o(k/2—kn/2)

—o(K)¢(0)],

and here g is the product of the absolute value of the relative
velocity and the collisional cross section (below we assume
g=g/4m, ie., isotropic scattering), and the integration is
over the surface of the unit sphere. Earlier one of us [15]
obtained on the basis of Bobylev’s results the expression for
WV in the case of the bimodal distribution function (1):

V=v(l1-v)gnon 1[2<pé/2<p%/zsinhq/q— ©o— P1]-
Here
q=q(k)=ik(ag—a7)(k*+2ik,k— k*)'?,
Kk=2(ug—uy)/(ag=a?),
¢, =exp(— %aikz—ikzuu), ai=RT“.
As

f d’v v;1J(v)=(2w)‘3f d’k dPv v "W (Kk)exp(ik-v)

and [16]
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+ o0 1 + oo
f dv,, exp(ik, v, ,)=278(k, ), f d*v v, J(v)= %zf dk, ¥(0,0,k,)sgnk,

<+ 0o
=i k¥ 0,0,) - ¥(0,0,-k)]
+o0 0
P f dv, v ‘exp(ik,v,) =i sgnk,,

—0o0

+co
=-— fo dk, ImV¥(0,0,k,).
(where P represents principal value) we have If ¢,(0,0,k,)= <p2 , q(0,0,k,)=¢q° then

|

+ o0
f dv v \J(v)=—v(1— V)gnonll fo dk, Im[ (@?— <p8)/q0]

- \/(1/2)7ra51exp(—u3/2a§)erﬁ( \/I/—Zuo/ao)-— V(1/2) wal’lexp(—u%/zaf)erﬁ( \/T/Eul /a)t. (2)

In order to make the shock-wave thickness A/§ dimensionless, we used the upstream mean free path
N=po/po(2RT, /) ? [11], where according to Chapman-Enskog theory [9], uo=5kT,/80%?=2kT,/g.

The quadrature in Eq. (2) can be turned to a finite-domain one (it may be helpful for numerical procedures) using the fact
that for arbitrary a and B the function y(A\)=[g “dx(x+iB) lexp(—ax?>—ikx) is the solution of dy/d\=— By
—ifydx exp(— ax®>—i\x). After that all we need is an appropriate textbook (e.g., [17]). As intermediate results, we had

f dx x'[exp(— ayx?—iNyx) —exp(— ayx?—iN1x)]= — 2In( @, /@) + S wilerf(3 N1 /a)?) —erf(1N, /ad?)]
0

12 [N2r2a)? )
- 2l d§ exp(— &°)erfig,
1

A R2a

N2al?
exp(aB?)E (aB?) ~ 277”2f d€ exp(— £ —2a'?BE)ertié
0

y(\)= %eXp(ﬂh){

+ i exp(aB?)[2 erf(a'?B) —erf(:N/aV?+ a'?B) — 1]] .
After some simple manipulations we can obtain
L(uo—uy)Im f :dkz W(0,0,k,) = — 71”2 Lx"dg exp(— £)erfié+ Hn(T, /T)
1
+3(3m) [y exp(—xg)erfixg+y exp(—x7)erfix, ]+ sexp(2z,)

x| exp(DE, (1D~ 272 [ "ag exp(- £-271,grerte

—2exp(220)

exp(t5)E (t5) —2m'"2 f Oxodg exp(— &2~ 23/2t0§)erﬁ§} )

Here
x,=V1/2u,/a,, y#=(ua—uﬁ)/a#, zﬂ=u#(ua—u3)/(ai—af3), t,“=ay(ua—uﬁ)/(ai—af3).
To proceed with v2/v, closure, we differentiate our function ¥ twice and put ky=k,=0:
G(k,)=[(0*/0k%+ 9%/ 9k5)¥1(0,0,k,)/v(1—v)gnon,
=4(3@)) {5 (al+a?)sinhg®/q°+ (coshq®—sinhg®/q*)[ 1/k2+ (aj—a?)?k2/16q3]} — 2 (ajey+ ai ¢!

=—2{3(ag+a}) ()~ @0)/q° +[1/k2+ (ag—a})*kZ/16q3][ (@]~ ©0)/q°— g — ¢]1— (agey+aie))}.
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FIG. 1. Inverse shock thicknesses \/Jg (for
1/v, closure; lower full line) and N/8g (for
v2/v, closure; upper full line) versus the up-
stream Mach number for pseudo-Maxwellian
molecules. Also the results of [19] (O), [20] (+),
[8] (X), [19] (*), [1] (dashed lines, upper: vz;
lower: vf), [21] (dotted lines, from bottom to top:
vZ,ud; viuw? vduw?), and [22] (dash-
dotted line) are shown.

If F(k,)=%¥(0,0,k,)/v(1—v)gngyn, then for 1/v, closure
NSr=12m Y ai/ag) " Y (uy /ug— 1)_1f dk, ImF (k,),
0
and for v2/v, closure
N 8g=5(2m) " (ay/ag) [ (uy/ug)(ai/ag) >~1)]7"

X j dk,Im G(k,).
0

In Fig. 1 we show the dependencies of N/Jy and N/Jg
versus M. We made a comparison with Monte Carlo simu-
lations [3,8,19,20] and previous approximate analytical solu-

tions [1,21,22]. It is seen that the results obtained by Bird’s
DSMC method show a reasonable agreement with the curve
corresponding to the moment 1/v,. We can see that these
values tend to O for M — o, as is the case for arbitrary clo-
sure. It is known that for molecules interacting via ¢ocr ™7
the Mott-Smith collision integral decreases for M — as
(To/T1)"? [12,18]. Kogan [12] even explained this phenom-
enon qualitatively.

ACKNOWLEDGMENTS

This research was partly supported by the International
Science Foundation.

[1] H. M. Mott-Smith, Phys. Rev. 82, 885 (1951).

[2] A. G. Bashkirov and A. V. Orlov, J. Stat. Phys. 64, 429 (1991).

[3] S.-M. Yen and W. Ng, J. Fluid Mech. 65, 127 (1974).

[4] A. V. Orlov, Physica A 190, 405 (1992).

[5] G. C. Pham-Van-Diep and D. A. Erwin, in Rarefied Gas Dy-
namics: Theory and Computational Technigues (International
Symposium on RGD, Pasadena, CA, 1988), edited by E. P.
Muntz et al. [Prog. Astronaut. Aeronaut. 118, 271 (1989)].

[6] E. P. Muntz et al., in Proceedings of the 17th International
Symposium on RGD, Aachen, 1990, edited by A. E. Beylich
(VCH, Weinheim, 1991), p. 198.

[7] D. A. Erwin et al., Phys. Fluids A 3, 697 (1991).

[8] G. C. Pham-Van-Diep et al., J. Fluid Mech. 232, 403 (1991).

[9] J. H. Ferziger and H. G. Kaper, Mathematical Theory of Trans-
port Processes in Gases (North-Holland, Amsterdam, 1972).

[10] S. M. Deshpande and R. Narasimha, J. Fluid Mech. 36, 545
(1969).
[11] B. M. Segal and J. H. Ferziger, Phys. Fluids 15, 1233 (1972).

[12] M. N. Kogan, Rarefied Gas Dynamics (Plenum, New York,
1969).

[13] B. M. Segal, Ph.D. thesis, Stanford University, 1971 (unpub-
lished).

[14] A. V. Bobylev, Theor. Math. Phys. 60, 820 (1984)

[15] A. V. Orlov, J. Phys. II (France) 3, 339 (1993).

[16] P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill, New York, 1953), Vol. 1.

[17] H. Bateman and A. Erdelyi, Tables of Integral Transforms
(McGraw-Hill, New York, 1954), Vol. 1.

[18] C. Cercignani, Theory and Application of the Boltzmann Equa-
tion (Scottish Academic Press, Edinburgh, 1975).

[19] G. A. Bird, Phys. Fluids 13, 1172.(1970).

[20] B. L. Hicks et al., J. Fluid Mech. 53, 85 (1972).

[21] H. Salwen et al., Phys. Fluids 7, 180 (1964).

[22] L. H. Holway, in Rarefied Gas Dynamics, 4th International
Symposium, edited by J. H. de Leeuw [Adv. Appl. Mech.
Suppl. 3, 1, 193 (1965)].



